Rules for abstracts of the UM-2021 conference reports

Abstracts are accepted in the amount of 1 or 2 full pages of A4 text, in the MS Word editor **without figures**.

Abstracts are drawn up in accordance with the following requirements:

- font Times New Roman, size 14 pt; margins: left, right, top and bottom -2 cm; line spacing single;
- first line the title of the report in capital letters, center alignment, bold font, size 14 pt. One blank line after the title;
- second line the name and initials of the authors of the report, center alignment, bold font, size 14 pt;
 - third line city and country, center alignment, non-bold font, italic type.

The main text – after one blank line, justified; indention – 1 cm;

References (font Times New Roman, size 14 pt) – one blank line after the main text.

An example of abstract's drawing-up is given on the next page.

PROBLEMS OF THE BAYESIAN APPROACH IMPLEMENTATION TO MEASUREMENT UNCERTAINTY EVALUATION

Zakharov I.P.

Kharkiv, Ukraine

More than 20 years have passed since the creation of the Guide to the Expression of Uncertainty in Measurement (GUM) [1]. During this time, many of its shortcomings were identified, which led to the need to develop an approach based on the numerical implementation of the propagation of distributions [2].

The expression for expanded uncertainty U in GUM has the form:

$$U = ku(y), \tag{1}$$

where k is the coverage factor; u(y) is standard uncertainty of the measurand.

A comparison of the expanded uncertainty estimates and those obtained using the approaches described in [1] and [2] shows their numerical difference.

A comparison of the parameter estimates presented in JCGM 100:2008 and JCGM 100:201X (CD) is demonstrated in Table 1 [3].

Table 1

Parameter	JCGM 100:2008	JCGM 100:201X (CD)
$u_A(x_j)$	$s_j/\sqrt{n_j}$	$\sqrt{(n_j-1)/(n_j-3)} \cdot s_j / \sqrt{n_j}$
$u_{\scriptscriptstyle B}(x_{\scriptscriptstyle j})$	Based on a priori information on the PDF of input quantities	
$u_j(y)$	$c_j u(x_j), c_j = \partial y / \partial x_j$	
U(y)	$t_{0,95}(v_{eff})u(y),$ $v_{eff} = \frac{u^4(y)}{\sum_{j=1}^{m} \frac{u_j^4(y)}{v_j}}$	ku(y), k = 4,47 (for unknown PDF); k = 2,98 (for symmetric unimodal PDF)

References

- 1. Guide to the Expression of Uncertainty in Measurement. Geneva: ISO, 1993. 101 p.
- 2. JCGM 101:2008. Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement" Propagation of distributions using a Monte Carlo method. JCGM, 2008. 88 p.
- 3. Bich et al. Revision of the "Guide to the Expression of Uncertainty in Measurement". *Metrologia*. 2012, Vol. 49. pp. 702–705.